Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 14: 1342219, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38328618

RESUMO

Legumes play a crucial role in the restoration and utilization of salinized grassland. To explore the physiological response mechanism of Astragalus membranaceus and Medicago sativa seedlings to salt stress, salt stress culture experiments with five NaCl concentration treatments (0 mmol/L, 50 mmol/L, 100 mmol/L, 200 mmol/L, and 300 mmol/L) were conducted on these two legume seedlings. Morphological characteristics, physiological features, biomass, and the protective enzyme system were measured for both seedlings. Correlation analysis, principal component analysis (PCA), and membership function analysis (MFA) were conducted for each index. Structural equation modeling (SEM) was employed to analyze the salt stress pathways of plants. The results indicated that number of primary branches (PBN), ascorbate peroxidase (APX) activity in stems and leaves, catalase (CAT) activity in roots, etc. were identified as the primary indicators for evaluating the salt tolerance of A. membranaceus during its seedling growth period. And CAT and peroxidase (POD) activity in roots, POD and superoxide dismutase (SOD) activity in stems and leaves, etc. were identified as the primary indicators for evaluating the salt tolerance of M. sativa during its growth period. Plant morphological characteristics, physiological indexes, and underground biomass (UGB) were directly affected by salinity, while physiological indexes indirectly affected the degree of leaf succulence (LSD). Regarding the response of the protective enzyme system to salt stress, the activity of POD and APX increased in A. membranaceus, while the activity of CAT increased in M. sativa. Our findings suggest that salt stress directly affects the growth strategies of legumes. Furthermore, the response of the protective enzyme system and potential cell membrane damage to salinity were very different in the two legumes.

2.
Plants (Basel) ; 11(12)2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35736719

RESUMO

Miscanthus interspecific hybrids have been proved to have better adaptability in marginal lands than their parents. Miscanthus sacchariflorus and Miscanthus lutarioriparius were used as the parents to develop hybrids. We performed the transcriptome for 110 F1 hybrids of Miscanthus sacchariflorus × Miscanthus lutarioriparius and their parents that had been established on the Loess Plateau mine area, to estimate the population's genetic expression variation, and illuminate the adaptive mechanism of the F1 population. The result speculated that the F1 population has mainly inherited the stress response metabolic pathway of its female parent (M. sacchariflorus), which may be responsible for its higher environmental adaptability and biomass yield compared with male parents. Based on PopART, we assembled a leaf reference transcriptome for M. sacchariflorus (LRTMS) and obtained 8116 high-quality transcripts. When we analyze the differential expression of genes between F1 population and parent, 39 and 56 differentially expressed genes were screened out in the female parent and male parent, respectively. The enrichment analysis showed that pathways of carbohydrate metabolism, lipid metabolism, biosynthesis of secondary metabolites and circadian rhythm-plant played a key role in resisting the harsh environment. The carbohydrate metabolism and lipid metabolism were also significantly enriched, and the synthesis of these substances facilitated the yield. The results provided an insight into breeding Miscanthus hybrids more suited to the harsh environment of the Loess Plateau.

3.
Front Plant Sci ; 13: 1017712, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36726684

RESUMO

Miscanthus, a promising bioenergy plant, has a high biomass yield with high cellulose content suitable for biofuel production. However, harsh climatic and poor soil conditions, such as barren lands or abandoned mines, pose a challenge to the survival and yield of Miscanthus feedstock on the marginal land. The selection from the interspecific hybrids of Miscanthus might combine high survival rates and high yield, which benefits energy crop development in multi-stressful environments. A total of 113 F1 hybrids between Miscanthus sacchariflorus and M. lutarioriparius together with the parents were planted and evaluated for multiple morphological and physiological traits on the mine land of the Loess Plateau of China. The majority of hybrids had higher establishment rates than M. sacchariflorus while M. lutarioriparius failed to survive for the first winter. Nearly all hybrid genotypes outperformed M. lutarioriparius for yield-related traits including plant height, tiller number, tiller diameter, and leaf area. The average biomass of the hybrids was 20 times higher than that of surviving parent, M. sacchariflorus. Furthermore, the photosynthetic rates and water use efficiency of the hybrids were both significantly higher than those of the parents, which might be partly responsible for their higher yield. A total of 29 hybrids with outstanding traits related to yield and stress tolerance were identified as candidates. The study investigated for the first time the hybrids between local individuals of M. sacchariflorus and high-biomass M. lutarioriparius, suggesting that this could be an effective approach for high-yield energy crop development on vast of marginal lands.

4.
Plants (Basel) ; 10(3)2021 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-33805780

RESUMO

As a potential energy crop with high biomass yield, Miscanthus lutarioriparius (M. lutarioriparius), endemic to the Long River Range in central China, needs to be investigated for its acclimation to stressful climatic and soil conditions often found on the marginal land. In this study, traits related to acclimation and yield, including survival rates, plant height (PH), stem diameter (SD), tiller number (TN), water use efficiency (WUE), and photosynthetic rates (A), were examined for 41 M. lutarioriparius populations that transplanted to the arid and cold Loess Plateau of China. The results showed that the average survival rate of M. lutarioriparius populations was only 4.16% over the first winter but the overwinter rate increased to 35.03% after the second winter, suggesting that plants having survived the first winter could have acclaimed to the low temperature. The strikingly high survival rates over the second winter were found to be 95.83% and 80.85%, respectively, for HG18 and HG39 populations. These populations might be especially valuable for the selection of energy crops for such an area. Those individuals surviving for the two consecutive winters showed significantly higher WUE than those measured after the first winter. The high WUE and low stomatal conductance (gs) observed in survived individuals could have been responsible for their acclimation to this new and harsh environment. A total of 61 individuals with productive growth traits and strong resistance to cold and drought were identified for further energy crop development. This study showed that the variation of M. lutarioriparius held great potential for developing energy crops following continuous field selection.

5.
Biol Lett ; 15(1): 20180583, 2019 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-30958214

RESUMO

Mechanisms underlying adaptation to rapid environmental change are issues in evolutionary biology. It is widely accepted that reduction in genetic diversity when suddenly exposed to an unfavourable environment limits the adaptive potential of populations. With growing empirical evidence that expression diversity is likely to increase in the new environment, the role that expression diversity plays in adaptation needs to be theorized. Here, we first established a negative exponential relationship between expression diversity and genetic diversity using a phenomenological differential equation. We then derived a complex trade-off relationship between the changes of expression and genetic diversity, which followed a combination of exponential functions. Furthermore, we found the increase in expression diversity could buffer the loss of adaptive potential as genetic diversity decreased to a certain extent. These theoretical deductions were validated by transcriptomic data of Miscanthus lutarioriparius grown in two experimental fields and supported by good fit and random simulation. These results suggest that increased expression diversity may compensate the loss of genetic diversity and allow the populations to maintain a certain level of phenotypic variation to cope with sudden environmental change. This may buffer the quick diminishing of adaptive potential and consequently increases the change of adaptation to the new environment.


Assuntos
Evolução Biológica , Variação Genética , Soluções Tampão , Poaceae , Seleção Genética , Transcriptoma
6.
Biotechnol Biofuels ; 11: 321, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30524503

RESUMO

BACKGROUND: The greenhouse gas (GHG) mitigation is one of the most important environmental benefits of using bioenergy replacing fossil fuels. Nitrous oxide (N2O) and methane (CH4) are important GHGs and have drawn extra attention for their roles in global warming. Although there have been many works of soil emissions of N2O and CH4 from bioenergy crops in the field scale, GHG emissions in large area of marginal lands are rather sparse and how soil temperature and moisture affect the emission potential remains unknown. Therefore, we sought to estimate the regional GHG emission based on N2O and CH4 releases from the energy crop fields. RESULTS: Here we sampled the top soils from two Miscanthus fields and incubated them using a short-term laboratory microcosm approach under different conditions of typical soil temperatures and moistures. Based on the emission measurements of N2O and CH4, we developed a model to estimate annual regional GHG emission of Miscanthus production in the infertile Loess Plateau of China. The results showed that the N2O emission potential was 0.27 kg N ha-1 year-1 and clearly lower than that of croplands and grasslands. The CH4 uptake potential was 1.06 kg C ha-1 year-1 and was slightly higher than that of croplands. Integrated with our previous study on the emission of CO2, the net greenhouse effect of three major GHGs (N2O, CH4 and CO2) from Miscanthus fields was 4.08 t CO2eq ha-1 year-1 in the Loess Plateau, which was lower than that of croplands, grasslands and shrub lands. CONCLUSIONS: Our study revealed that Miscanthus production may hold a great potential for GHG mitigation in the vast infertile land in the Loess Plateau of China and could contribute to the sustainable energy utilization and have positive environmental impact on the region.

7.
Plant Mol Biol ; 97(6): 489-506, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30006693

RESUMO

KEY MESSAGE: Coexpression network revealing genes with Co-variation Expression pattern (CE) and those with Top rank of Expression fold change (TE) played different roles in responding to new environment of Miscanthus lutarioriparius. Variation in gene expression level, the product of genetic and/or environmental perturbation, determines the robustness-to-plasticity spectrum of a phenotype in plants. Understanding how expression variation of plant population response to a new field is crucial to domesticate energy crops. Weighted Gene Coexpression Network Analysis (WGCNA) was used to explore the patterns of expression variation based on 72 Miscanthus lutarioriparius transcriptomes from two contrasting environments, one near the native habitat and the other in one harsh domesticating region. The 932 genes with Co-variation Expression pattern (CE) and other 932 genes with Top rank of Expression fold change (TE) were identified and the former were strongly associated with the water use efficiency (r ≥ 0.55, P ≤ 10-7). Functional enrichment of CE genes were related to three organelles, which well matched the annotation of twelve motifs identified from their conserved noncoding sequence; while TE genes were mostly related to biotic and/or abiotic stress. The expression robustness of CE genes with high genetic diversity kept relatively stable between environments while the harsh environment reduced the expression robustness of TE genes with low genetic diversity. The expression plasticity of CE genes was increased less than that of TE genes. These results suggested that expression variation of CE genes and TE genes could account for the robustness and plasticity of acclimation ability of Miscanthus, respectively. The patterns of expression variation revealed by transcriptomic network would shed new light on breeding and domestication of energy crops.


Assuntos
Andropogon/genética , Produtos Agrícolas/genética , Transcriptoma/genética , Biocombustíveis , Domesticação , Regulação da Expressão Gênica de Plantas/genética , Redes Reguladoras de Genes/genética , Genes de Plantas/genética
8.
Mol Ecol ; 26(21): 5911-5922, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28833782

RESUMO

The use of transcriptome data in the study of the population genetics of a species can capture faint signals of both genetic variation and expression variation and can provide a broad picture of a species' genomic response to environmental conditions. In this study, we characterized the genetic and expression diversity of Miscanthus lutarioriparius by comparing more than 16,225 transcripts obtained from 78 individuals, belonging to 10 populations distributed across the species' entire geographic range. We only observed a low level of nucleotide diversity (π = 0.000434) among the transcriptome data of these populations, which is consistent with highly conserved sequences of functional elements and protein-coding genes captured with this method. Tests of population divergence using the transcriptome data were consistent with previous microsatellite data but proved to be more sensitive, particularly if gene expression variation was considered as well. For example, the analysis of expression data showed that genes involved in photosynthetic processes and responses to temperature or reactive oxygen species stimuli were significantly enriched in certain populations. This differential gene expression was primarily observed among populations and not within populations. Interestingly, nucleotide diversity was significantly negatively correlated with expression diversity within populations, while this correlation was positive among populations. This suggests that genetic and expression variation play separate roles in adaptation and population persistence. Combining analyses of genetic and gene expression variation represents a promising approach for studying the population genetics of wild species and may uncover both adaptive and nonadaptive processes.


Assuntos
Variação Genética , Genética Populacional , Poaceae/genética , Transcriptoma , Produtos Agrícolas/genética , Repetições de Microssatélites , Polimorfismo de Nucleotídeo Único
9.
Plant Genome ; 10(2)2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28724071

RESUMO

Adaptation is a characteristic that enhances the survival or reproduction of organisms; selection is the critical process leading to adaptive evolution. Therefore, detecting selection is important in studying evolutionary biology. Changes in allele frequency are fundamental to adaptive evolution. The allele frequency of entire genes at the genomic scale is more intensive and precise for analyzing selection effects, compared with simple sequence repeat and single nucleotide polymorphism (SNP) alleles from nuclear gene fragments. Here, we analyzed 29,094 SNPs derived from 80 individuals of 14 L. Liou ex S.L. Chen & Renvoize populations planted near their native habitat (Jiangxia, Hubei Province, JH) and a stressful environment (Qingyang, Gansu Province, QG) to detect selection during initial adaptation. The nucleotide diversity of over 60% of genes was decreased in QG compared with JH, suggesting that most genes were undergoing selection in the stressful environment. We explored a new approach based on haplotype data inferred from RNA-seq data to analyze the change in frequency between two sites and to detect selection signals. In total, 402 and 51 genes were found to be targets of positive and negative selection, respectively. Among these candidate genes, the enrichment of abiotic stress-response genes and photosynthesis-related genes might have been responsible for establishment in the stressful environment. This is the first study assessing the change in allele frequency at the genomic level during adaptation. The method in which allele frequency detects selection during initial adaptation using population RNA-seq data would be useful for developing evolutionary biology.


Assuntos
Haplótipos , Poaceae/genética , Seleção Genética , Transcriptoma , Frequência do Gene , Genes de Plantas , Variação Genética , Polimorfismo de Nucleotídeo Único
10.
BMC Plant Biol ; 17(1): 42, 2017 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-28193161

RESUMO

BACKGROUND: Long non-coding RNA (lncRNA) is a class of non-coding RNA with important regulatory roles in biological process of organisms. The systematic comparison of lncRNAs with protein coding mRNAs in population expression and their response to environmental change are still poorly understood. Here we identified 17,610 lncRNAs and calculated their expression levels based on RNA-seq of 80 individuals of Miscanthus lutarioriparius from two environments, the nearly native habitats and transplanted field, respectively. RESULTS: LncRNAs had significantly higher expression diversity and lower expression frequency in population than protein coding mRNAs in both environments, which suggested that lncRNAs may experience more relaxed selection or divergent evolution in population compared with protein coding RNAs. In addition, the increase of expression diversity for lncRNAs was always significantly higher and the magnitude of fold change of expression in new stress environment was significantly larger than protein-coding mRNAs. These results suggested that lncRNAs may be more sensitive to environmental change than protein-coding mRNAs. Analysis of environment-robust and environment-specific lncRNA-mRNA co-expression network between two environments revealed the characterization of lncRNAs in response to environmental change. Furthermore, candidate lncRNAs contributing to water use efficiency (WUE) identified based on the WUE-lncRNA-mRNA co-expression network suggested the roles of lncRNAs in response to environmental change. CONCLUSION: Our study provided a comprehensive understanding of expression characterization of lncRNAs in population for M. lutarioriparius under field condition, which would be useful to explore the roles of lncRNAs and could accelerate the process of adaptation in new environment for many plants.


Assuntos
Proteínas de Plantas/genética , Poaceae/genética , RNA Longo não Codificante/genética , RNA Mensageiro/genética , China , Ecossistema , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Proteínas de Plantas/metabolismo , Poaceae/fisiologia , RNA de Plantas , Água/metabolismo
11.
Front Plant Sci ; 7: 109, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26904072

RESUMO

As a promising candidate for the second-generation C4 energy crop, Miscanthus lutarioriparius has well acclimated to the water-limited and high-light Loess Plateau in China by improving photosynthesis rate and water use efficiency (WUE) compared to its native habitat along Yangtze River. Photosynthetic genes were demonstrated as one major category of the candidate genes underlying the physiological superiority. To further study how photosynthetic genes interact to improve the acclimation potential of M. lutarioriparius, population expression patterns within photosynthesis pathway were explored between one mild environment and one harsh environment. We found that 108 transcripts in assembled transcriptome of M. lutarioriparius were highly similar to genes in three Kyoto Encyclopedia of Genes and Genomes (KEGG) photosynthesis pathways of sorghum and maize. Phylogenetic analyses using sorghum, maize, rice, and Arabidopsis genes of dark reaction identified 23 orthologs and 30 paralogs of M. lutarioriparius photosynthetic genes. These genes were also clustered into two kinds of expression pattern. 87% of transcripts in dark reaction were up-regulated and all 14 chloroplast-encoded transcripts in light reaction increased degradation in the harsh environment compared to the mild environment. Moreover, 80.8% of photosynthetic transcripts were coordinated at transcription level under the two environments. Interestingly, LHCI and PSI were significantly correlated with F-ATPase and C4 cycle. Overall, this study indicates the coordinated expression between cyclic electron transport (consisting of LHCI, PSI, and ATPase) and CO2-concentrating mechanism (C4 cycle) could account for photosynthesis plasticity on M. lutarioriparius acclimation potential.

12.
J Exp Bot ; 66(20): 6415-29, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26175351

RESUMO

Understanding the genetic basis of water use efficiency (WUE) and its roles in plant adaptation to a drought environment is essential for the production of second-generation energy crops in water-deficit marginal land. In this study, RNA-Seq and WUE measurements were performed for 78 individuals of Miscanthus lutarioriparius grown in two common gardens, one located in warm and wet Central China near the native habitats of the species and the other located in the semiarid Loess Plateau, the domestication site of the energy crop. The field measurements showed that WUE of M. lutarioriparius in the semiarid location was significantly higher than that in the wet location. A matrix correlation analysis was conducted between gene expression levels and WUE to identify candidate genes involved in the improvement of WUE from the native to the domestication site. A total of 48 candidate genes were identified and assigned to functional categories, including photosynthesis, stomatal regulation, protein metabolism, and abiotic stress responses. Of these genes, nearly 73% were up-regulated in the semiarid site. It was also found that the relatively high expression variation of the WUE-related genes was affected to a larger extent by environment than by genetic variation. The study demonstrates that transcriptome-wide correlation between physiological phenotypes and expression levels offers an effective means for identifying candidate genes involved in the adaptation to environmental changes.


Assuntos
Produtos Agrícolas/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Poaceae/genética , Água/metabolismo , China , Produtos Agrícolas/metabolismo , Secas , Ecossistema , Variação Genética , Proteínas de Plantas/metabolismo , Poaceae/metabolismo , Análise de Sequência de RNA
13.
J Integr Plant Biol ; 57(3): 284-99, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25251542

RESUMO

While it is widely accepted that genetic diversity determines the potential of adaptation, the role that gene expression variation plays in adaptation remains poorly known. Here we show that gene expression diversity could have played a positive role in the adaptation of Miscanthus lutarioriparius. RNA-seq was conducted for 80 individuals of the species, with half planted in the energy crop domestication site and the other half planted in the control site near native habitats. A leaf reference transcriptome consisting of 18,503 high-quality transcripts was obtained using a pipeline developed for de novo assembling with population RNA-seq data. The population structure and genetic diversity of M. lutarioriparius were estimated based on 30,609 genic single nucleotide polymorphisms. Population expression (Ep ) and expression diversity (Ed ) were defined to measure the average level and the magnitude of variation of a gene expression in the population, respectively. It was found that expression diversity increased while genetic diversity decreased after the species was transplanted from the native habitats to the harsh domestication site, especially for genes involved in abiotic stress resistance, histone methylation, and biomass synthesis under water limitation. The increased expression diversity could have enriched phenotypic variation directly subject to selections in the new environment.


Assuntos
Adaptação Fisiológica/genética , Variação Genética , Poaceae/genética , Transcriptoma/genética , Produtos Agrícolas/genética , Regulação da Expressão Gênica de Plantas , Genética Populacional , Genoma de Planta , Filogenia , Folhas de Planta/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Padrões de Referência
14.
BMC Evol Biol ; 14: 185, 2014 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-25123546

RESUMO

BACKGROUND: Gene flow plays an important role in domestication history of domesticated species. However, little is known about the demographic history of domesticated silkworm involving gene flow with its wild relative. RESULTS: In this study, four model-based evolutionary scenarios to describe the demographic history of B. mori were hypothesized. Using Approximate Bayesian Computation method and DNA sequence data from 29 nuclear loci, we found that the gene flow at bottleneck model is the most likely scenario for silkworm domestication. The starting time of silkworm domestication was estimated to be approximate 7,500 years ago; the time of domestication termination was 3,984 years ago. Using coalescent simulation analysis, we also found that bi-directional gene flow occurred during silkworm domestication. CONCLUSIONS: Estimates of silkworm domestication time are nearly consistent with the archeological evidence and our previous results. Importantly, we found that the bi-directional gene flow might occur during silkworm domestication. Our findings add a dimension to highlight the important role of gene flow in domestication of crops and animals.


Assuntos
Bombyx/genética , Fluxo Gênico , Animais , Teorema de Bayes , Evolução Biológica , Bombyx/fisiologia , Genoma de Inseto , Seleção Genética
15.
BMC Evol Biol ; 12: 128, 2012 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-22839428

RESUMO

BACKGROUND: Retrogenes generally do not contain introns. However, in some instances, retrogenes may recruit internal exonic sequences as introns, which is known as intronization. A retrogene that undergoes intronization is a good model with which to investigate the origin of introns. Nevertheless, previously, only two cases in vertebrates have been reported. RESULTS: In this study, we systematically screened the human (Homo sapiens) genome for retrogenes that evolved introns and analyzed their patterns in structure, expression and origin. In total, we identified nine intron-containing retrogenes. Alignment of pairs of retrogenes and their parents indicated that, in addition to intronization (five cases), retrogenes also may have gained introns by insertion of external sequences into the genes (one case) or reversal of the orientation of transcription (three cases). Interestingly, many intronizations were promoted not by base substitutions but by cryptic splice sites, which were silent in the parental genes but active in the retrogenes. We also observed that the majority of introns generated by intronization did not involve frameshifts. CONCLUSIONS: Intron gains in retrogenes are not as rare as previously thought. Furthermore, diverse mechanisms may lead to intron creation in retrogenes. The activation of cryptic splice sites in the intronization of retrogenes may be triggered by the change of gene structure after retroposition. A high percentage of non-frameshift introns in retrogenes may be because non-frameshift introns do not dramatically affect host proteins. Introns generated by intronization in human retrogenes are generally young, which is consistent with previous findings for Caenorhabditis elegans. Our results provide novel insights into the evolutionary role of introns.


Assuntos
Evolução Molecular , Éxons/genética , Duplicação Gênica , Íntrons/genética , Sequência de Aminoácidos , Sequência de Bases , Expressão Gênica , Genoma Humano/genética , Humanos , Dados de Sequência Molecular , Mutagênese Insercional , Sítios de Splice de RNA/genética , Retroelementos/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transcrição Reversa , Homologia de Sequência do Ácido Nucleico , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...